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Abstract. The MVDR (Minimum Variance Distortionless Response) algorithm is a classic Wiener
filtering method used for beamforming in array signal processing. In a one-dimensional linear array
high-frequency ground wave radar system, it can be employed to suppress various types of
ionospheric clutter. A key step in suppression is the use of maximum likelihood estimation (MLE) to
estimate the ionospheric clutter covariance matrix. However, MLE typically assumes that samples
are independently and identically distributed (i.i.d.). Traditional MVDR algorithms estimate the
clutter covariance matrix using all samples, which may not satisfy the i.i.d. condition. Therefore, this
paper proposes a hew sample selection strategy that utilizes the Mahalanobis distance method to
select samples. Meanwhile, due to the very small numerical values of the ionospheric clutter
covariance matrix, even if the matrix is full-rank, numerical instability may occur during inversion. To
address this issue, the paper introduces 4 different forms of regularization factors. Empirical data
demonstrate that the proposed new method offers better suppression of ionospheric clutter
compared to the traditional MVDR algorithm.
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1. Introduction

High-Frequency Surface Wave Radar is primarily used for detecting ground targets and
monitoring the ocean surface[1]. It utilizes high-frequency signals that propagate along the Earth's
surface and can penetrate through terrain obstacles. Ionospheric clutter is a major source of
interference for HF ground wave radar, primarily arising from the irregularities in the ionosphere
and the propagation characteristics of electromagnetic waves within the ionosphere[2].

To suppress the ionospheric clutter, many researchers have conducted extensive studies.
Reference [3] proposed using the oblique projection method to suppress ionospheric clutter. Its
advantage lies in its simplicity, requiring only a single sample and not necessitating the estimation
of the clutter covariance matrix. However, it has the drawback of requiring a high signal-to-noise
ratio. Reference [4] proposed using the GSC (Generalized Sidelobe Canceller) algorithm to
suppress ionospheric clutter. The advantage of this method is that the algorithm is relatively mature,
hardware implementation is simple, and it can effectively reduce the impact of ionospheric clutter,
thereby improving the signal-to-noise ratio of the target signal. However, its drawback is that it
requires a high-quality blocking matrix, and the effectiveness of the suppression is entirely
dependent on the blocking matrix[5,6].

This paper first uses the traditional MVDR algorithm to suppress the ionospheric clutter. In this
process, the estimation of the clutter covariance matrix is crucial. Since the total clutter samples are
not independent and identically distributed, the estimated clutter covariance matrix differs
significantly from the ideal clutter covariance matrix, resulting in poor suppression of ionospheric
clutter. Therefore, this paper proposes a new sample selection strategy. The role and purpose of
pattern recognition is to correctly classify a specific piece of information (pattern) into a category;
its core is to design an appropriate classifier, i.e., classification criteria. The Mahalanobis distance
method can serve as the classification criterion for sample selection. In the High-Frequency surface
wave radar systems, the numerical instability of the ionospheric clutter covariance matrix is a
complex challenge. To address this issue, this paper introduces four different forms of
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regularization factors. Simulations with measured data show that, compared to the traditional
MVDR algorithm, the new algorithm proposed in this paper provides better suppression of the
ionospheric clutter.

2. Experimental Principle

2.1 MVDR Algorithm

The MVDR algorithm is a beamforming technique primarily used in array signal processing. Its
purpose is to maximize the reception of signals from a specific direction while minimizing
interference and noise from other directions. This algorithm finds wide application in fields such as
radar, sonar, and wireless communications[7,8].

The specific steps of the MVDR algorithm are as follows:

1) Define the Array Signal Model: Assume the array has N sensors, the received signal can be
represented as:

xX=s+c+n (1)

where s is the target signal and c is the ionospheric clutter and # is the noise .

2) Construct the Array Steering Vector: For a signal coming from direction 6, its array steering
vector is a(6).

3) Calculate the Covariance Matrix: Estimate the covariance matrix R of the received signals
based on the data:

R =x(n)x" (n) ()
where x/(n) is the conjugate transpose of x(n).In practical applications, the clutter covariance
matrix usually cannot be obtained directly but is instead estimated from neighboring clutter cells.

R :%é:xi(n)xili(n) (3)

4) Formulate the Optimization Problem: The goal of the MVDR algorithm is to find a weight
vector W that minimizes the output power while maintaining a distortionless response in the target
direction. The optimization problem can be expressed as:

mWin WY"RW subjectto W'"a(6) =1 4)

5) Solve for the Weight Vector: Using the method of Lagrange multipliers, the optimal weight
vector W can be obtained as:

R'a(6
- _Rall) 5)
a’ (0)R a(0)
6) Form the Beamformed Output: Apply the optimal weight vector W to the received signal to
obtain the beamformed output:

y(n) =W " x(n) (6)

To summarize, the steps of the MVDR algorithm include defining the array signal model,

constructing the array steering vector, calculating the covariance matrix, formulating the
optimization problem, solving for the weight vector, and finally forming the beamformed output.

2.2 Mahalanobis Distance

Mahalanobis distance is a type of similarity measure. A similarity measure is a specific metric
used to express the degree of similarity between samples, where similar samples are grouped into a
cluster. There are various types of data and numerous similarity measures. This section primarily
introduces the Mahalanobis distance[9,10].

In general, samples of the same class have similar features, while samples of different classes
exhibit significantly different features. This means that samples of the same class cluster in one
region, whereas samples of different classes are relatively distant from each other. The distance

174



between sample points in the feature space directly reflects the category to which the corresponding
samples belong and can be used as a measure of sample similarity. The closer the distance, the
greater the similarity, and the higher the likelihood that they belong to the same class; conversely,
the farther the distance, the smaller the similarity, and the lower the likelihood that they belong to
the same class. Therefore, distance measures are also referred to as dissimilarity measures, which
can be converted into similarity measures by methods such as taking the negative value.

The Mahalanobis distance for a complex signal is given by:

d(x,x,) = J(x, = %) "R™(x, - x)) (7)

2.3 Loading Factor.

The MVDR algorithm is primarily designed for narrowband signals and operates based on
interference suppression at a specific frequency[11]. However, ionospheric clutter is typically a
broadband signal that contains multiple frequency components. When handling broadband signals,
the MVDR algorithm needs to be applied individually at each frequency point[12]. Since
ionospheric clutter is non-stationary in time, the clutter covariance matrix exhibits numerical
instability.  This paper presents a solution by introducing a loading factor. The loading factor
consists of two parts: the magnitude A and the form @ of the matrix. The discussion on the
magnitude will be carried out later; this section first discusses the form of the matrix. The paper
proposes four forms: an all-ones matrix, an identity matrix, a uniformly distributed matrix, and a
normally distributed matrix. The advantages and disadvantages of these four forms are thoroughly
discussed in the simulation results.

R=R+ D ®)

3. Simulation Results

We first analyze and study a batch of high-frequency surface wave radar echo data containing
ionospheric clutter. This data was obtained from the Weihai radar station in July 2015. The radar
operated at a frequency of 5.705 MHz, with the receiving array consisting of 8 elements. Each CPI
(Coherent Processing Interval) contained 4480 pulses, and Doppler processing was performed on
the data to form 4480 Doppler bins. There were 300 range bins, with each range bin corresponding
to 1.5 km.The range-Doppler spectrum of the data is shown in the figure below.

It can be observed that between 90 km and 450 km, there is a significant amount of ionospheric
clutter with various shapes. This clutter occupies a large number of range-Doppler cells, severely
affecting target detection.

From the figure, it can be observed that the 67th, 120th, and 150th range bins are all covered
with a significant amount of ionospheric clutter. The average clutter power for each of these
rangebins is calculated to be -111.1785 dB, -128.8049 dB, and -124.9030 dB, respectively.
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Fig. 1 Range-Doppler spectrum of ionospheric clutter

To verify the effectiveness of the proposed method for detecting targets in the presence of
ionospheric clutter, a target was added to this batch of data. The target has an average power of
-105 dB and a signal-to-clutter ratio of 6.1785 dB. The direction of the target is 5 degrees, and the
target's velocity is -2.8 m/s.

After adding the target, Doppler processing and digital beamforming were performed. The
resulting processed data is shown in the figure below.
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Fig. 2 Digital beamforming
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Fig. 3 Doppler processing
The results obtained by applying the traditional MVDR algorithm to the measured data are

shown in the figure below. As can be seen from the figure, the traditional MVDR algorithm
provides a certain level of suppression for ionospheric clutter.
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Fig. 4 MVDR processing

The MVDR algorithm uses the maximum likelihood estimation method to estimate the
ionospheric clutter covariance matrix. However, the maximum likelihood estimation method
requires all samples to be independent and identically distributed (i.i.d.), which is clearly not the
case for ionospheric clutter samples. Therefore, this paper employs the Mahalanobis distance
method to select samples that best approximate the i.i.d. condition. The 67th range bin was chosen
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as the test sample, and the Mahalanobis distances between this sample and all other range bins were
measured. The simulation results are shown in the figure.
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Fig. 5 Mahalanobis distance

In general, similar samples have comparable features, and the closer the distance, the greater the
similarity. Therefore, a threshold can be set such that when the Mahalanobis distance is below this
threshold, the range bins are considered to have ionospheric clutter that approximates the
independent and identically distributed (i.i.d.) condition with the 67th range bin. These bins are then
selected as training samples to estimate the ionospheric clutter covariance matrix. The simulation
results are shown in the figure.
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Fig. 6 M-MVDR

Since ionospheric clutter is non-stationary in time, the clutter covariance matrix exhibits
numerical instability. This paper presents a solution by introducing a loading factor. The loading
factor consists of two parts: the magnitude A and the form @ of the matrix.Measured data indicate
that the magnitude A of the matrix should be smaller than the magnitude of the clutter covariance
matrix by three orders of magnitude to achieve the best processing results. When the form @ of the
matrix is normally distributed matrix, the processing results are shown in the figure.
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Fig. 7 N-M-MVDR

When the form @ of the matrix is uniformly distributed matrix, the processing results are shown
in the figure.
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Fig. 8 U-M-MVDR

When the form @ of the matrix is identity matrix, the processing results are shown in the figure.
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When the form @ of the matrix is all-ones matrix, the processing results are shown in the figure.
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Fig. 10 A-M-MVDR

Based on the previous text, the initial SCR(signal-to-clutter ratio) is 6.1785 dB. To facilitate
comparison of the effectiveness of various algorithms in suppressing ionospheric clutter, a table has
been specially prepared. The units of the signal-to-clutter ratio in the table are all in dB.From Table
I, it can be seen that various algorithms can effectively improve the SCR. However, the
N-M-MVDR algorithm has the best performance in suppressing ionospheric clutter, achieving an
SCR of 27.7199 dB. This is because the statistical characteristics of ionospheric clutter can typically
be approximated by a Gaussian distribution. The normal distribution matrix can effectively capture
these characteristics of ionospheric clutter, thereby more accurately describing its covariance
structure.
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Table 1. Signal-to-Clutter ratio

DOA MVDR | M-MVDR N-M-MVDR U-M-MVDR I-M-MVDR A-M-VDR

23.2297 24.4647 27.5088 27.7199 27.4809 27.4530 27.2864

4. Summary

The MVDR algorithm requires using the MLE method to estimate the covariance matrix of the
ionospheric clutter. MLE requires all samples to satisfy the condition of being independently and
identically distributed (i.i.d.). However, ionospheric clutter samples clearly do not meet this
requirement. Therefore, this paper uses the Mahalanobis distance method to select samples that
satisfy the i.i.d. condition. Since ionospheric clutter is non-stationary over time, it presents
numerical stability issues. This paper introduces four different forms of loading factors. Simulation
results show that the loading factor in the form of a normal distribution provides the best
suppression of ionospheric clutter.
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