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Abstract. This study employs the XGBoost regression model to predict the strength of UHPC and
utilizes the Shapley algorithm to interpret the model's predictions, revealing the impact of various
feature parameters. The results demonstrate that the XGBoost regression model effectively fits the
data and possesses strong predictive capabilities. Furthermore, the interaction between silica fume
and cement significantly influences the model predictions. Additionally, using tools such as the
Shapley heatmap, the study analyzes the model's characteristics and finds that only a subset of
samples have Shapley values below the mean, indicating the dataset contains relatively few
high-quality samples. Through the Shapley algorithm, the optimal range for silica fume quantity is
determined to be between 0 and 320 kg. This research validates the effectiveness of the XGBoost
regression model for predicting UHPC strength and enhances model interpretability using the
Shapley algorithm.
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1. Introduction
Ultra-High Performance Concrete (UHPC) represents a novel cementing material achieving
significant performance advancements over traditional concrete, facilitated by meticulous design
and utilization of high-performance constituents. For the determination of UHPC strength,
conventional laboratory methods often necessitate resources for experimentation and data analysis,
whereas machine learning algorithms offer distinct advantages. Machine learning models can
forecast the performance metrics of UHPC, thereby reducing the experimental costs and time
investments. Many scholars have predicted the mechanical properties of various concretes via
different machine learning algorithms. Mohamed Abdellatief et al. [1] employed Random Forest,
Support Vector Regression (SVR), and Extreme Gradient Boosting (XGBoost) to predict the
compressive strength of Ultra-High Performance Geopolymer Concrete. Dinesh et al. [2] revealed
the primary factors on the compressive strength of UHPGC using machine learning models,
optimizing formulations for green building materials, and concluded that XGBoost, Support Vector
Machine (SVM) and SVR are proficient in predicting shear strength. Huang et al. [3] proposed a
corrosion-resistant steel-reinforced concrete strength prediction model based on SHapley Additive
exPlanations (SHAP) values, integrating several ML algorithms with experimental data from 166
interfaces of corroded steel-reinforced concrete. Yuan et al. [4] explored self-healing capabilities of
engineered cementing composites using various machine learning models and employed the SHAP
algorithm to analyze the impact of input parameters on output parameters. Khan et al. [5] utilized
the machine learning algorithms to identify the primary factors on predicting the compressive
strength of Reactive Powder Concrete, demonstrating the effectiveness of multi-layer stacking
models in strength prediction. Pakzad et al. [6] predicted the splitting tensile strength of Steel Fiber
Reinforced Concrete (SFRC) using multiple machine learning models, highlighting Support Vector
Regression as the optimal performer.
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So far, the effectiveness of XGBoost for predicting the UHPC strength has not been demonstrated.
This study utilize the XGBoost algorithm for strength prediction in UHPC, and interpreted the
results via SHapley Additive exPlanations, which have never been studied.

2. Methodlogy
2.1 XGBoost algorithm

The Extreme Gradient Boosting (XGBoost) algorithm primarily optimizes the Gradient Boosting
Decision Trees, the fundamental principles of which can be illustrated in Fig. 1a. The objective
function of XGBoost encompasses loss functions and regularization terms, aiming to enhance the
predictive accuracy and prevent overfitting[7]. Employing classification and regression trees as the
basic learners, the algorithm constructs decision trees by minimizing the objective function, where
the algorithm selects the optimal feature for partitioning for each node within XGBoost.

Fig. 1. Schematic diagram of (a) the XGBoost algorithm ,and (b) 10-fold cross-validation

2.2 Cross-validation
Cross-validation is widely employed as an evaluation technique in the field of machine learning,
aimed at assessing the generalization ability of the tested models[8]. Ten-fold cross-validation (k =
10) is regarded as an effective means to evaluate model generalization ability due to its unique data
partitioning approach[9]. Within each fold, the randomness of data ensures variability in the model
performance, reflecting the behaviors across different data distributions. Averaging the results from
all k validations can provide a comprehensive and balanced assessment of the model performance.
The adoption of repeated validation enhances the resolution in evaluation outcomes, with each
validation being independent on distinct data subsets, thereby potentially revealing performance
fluctuations, as depicted in Figure 1b.

2.3 Model assessment
Model evaluation metrics serve as critical standards for assessing the model performance including
accuracy, precision, and recall. Additionally, the balance and consistency between these metrics
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must be considered to ensure the reliability and accuracy of evaluation results. In this study, model
training effectiveness is evaluated using four evaluation metrics involving coefficient of
determination (R2), root mean square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE)[10].
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where iy and ˆiy represent the prediction value and true value of the model, respectively.

2.4 SHAP algorithm

Fig. 2 Shapley Additive exPlanations of the XGBoost model

Shapley Additive exPlanations (SHAP) is a Python-based model interpretation toolkit[11]. The
fundamental principle derives from the contributions of input features, calculating all feature
combinations and the marginal contributions of each feature within these combinations to determine
the Shapley value of each feature. The general procedure of the Shapley algorithm involves initially
computing Shapley values to assess the importance of each feature within the sample, measuring
their impact on model training. As depicted in Figure 2, the XGB regression model used in this
study utilizes SHAP explanations to visually display the Shapley values of each feature, thereby
quantifying their impact on model training more intuitively.

3. Data collection and processing
The datasets in this study originates from Abuodeh et al. [12] encompassing eight input parameters:
cement (C), silica fume (Si), fly ash (FA), sand (S), steel fiber (SF), quartz powder (QP), water (W),
and admixture (Ad), along with one output parameter, UHPC compressive strength (fc). Bootstrap
resampling was employed to expand the datasets from 110 original samples to 1099 samples. Figure
3a displays the violin plot of the expanded datasets. The violin plot illustrates the dataset after
expansion, where wider sections indicate higher probability of observed values, while narrower
sections correspond to lower probabilities. Fig. 3b presents a heatmap of feature correlations, where
the sizes of pie and square shapes in the heatmap illustrate the magnitude of correlation coefficients
more intuitively than color intensity.
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Fig. 3 (a) The violin plot of the expanded datasets, and (b) the violin plot of the expanded datasets

4. Results

4.1 The prediction of LightGBM regression model
Figure 4(a) shows the the prediction of LightGBM regression model. Red points represent instances
tested on the training set, while the blue sample points denote predictions. It is evident that these
points are distributed closely around the diagonal line, indicating minimal deviation between the
training and predicted values. Moreover, the range of predicted values for both training and testing
sets is comparable, suggesting consistent predictive performance across different datasets. Figure
4(b) displays the model evaluation metrics of the predicted results, where the XGBoost regression
model exhibits superior performance across all metrics, boasting a high coefficient of determination
(R² = 0.966), low root mean square error (RMSE = 0.036), minimal mean absolute error (MAE =
0.011), and negligible mean absolute percentage error (MAPE = 0.064).

Fig. 4 (a) The fitting results of the XGBoost regression model prediction, and (b) the model
evaluation metrics.

4.2 Model evaluation based on Shapley interpretation algorithm
For the XGBoost regression model, SHAP analysis provides a more intuitive depiction of each
feature during the prediction process. Figure 5(a) showcases the global feature importance plot,
emphasizing the crucial significance of silica fume and cement dosage in training the XGBoost
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regression model. This underscores their substantial impact on predicting outcomes within the
UHPC mixture. In Figure 5(b), the importance distribution plot reveals that silica fume dosage
positively influences the training effectiveness more significantly than cement dosage, which
exhibits a slightly negative effect, aligning with the linear relationship of cement in the UHPC
manufacturing process. Figure 5(c) displays the interaction SHAP summary plot, demonstrating
varying impacts on the XGBoost regression model under different feature interactions, with notable
significance observed in interactions involving cement. Figure 5(d) illustrates the single sample
decision plots, offering visual insights into the extent of feature impacts and variations in model
predictions. Figure 5(e) presents the multi-sample decision plot, where each line converges at the
predicted value of the corresponding observation on the x-axis, illustrating each feature's
contribution to overall predictions. The multi-sample decision plots, akin to heatmaps, convert
logarithmic odds into probabilities, converging observations at the bottom to 1.0. Figure 5(f) depicts
the SHAP summary heatmap, highlighting that among the dataset, only the last 50 samples have
SHAP values summed for f(x) below the average line, suggesting they are not optimal samples. The
XGBoost regression model identifies the optimal range for silica fume quantity as 0 to 320 kg.

Fig. 5 (a) Feature importance diagram, (b) global feature importance diagram, (c) interactive
SHAP-summary diagram, (d) single sample decision diagram, (e) multiple eigenvalues decision
diagram, and (f) shapley heat map
Summary
In this study, a datasets comprising 110 samples of UHPC was collected and expanded to 1099
samples using Bootstrap resampling. Evaluation of four performance metrics across three models
indicates good fitting to the samples. Through comprehensive SHAP analysis of the XGBoost
regression model, it was observed that the quantity of silica fume positively influences model
training effectiveness to a greater extent, whereas cement exhibits a stronger negative impact. The
interaction effects between silica fume and cement are most pronounced in SHAP analysis, with
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silica fume and cement exhibiting the highest single-feature importance levels for the model. The
SHAP algorithm effectively reconstructs the decision process of the model predicting the
compressive strength of UHPC, identifying optimal sample selections to elucidate the optimal
ranges of feature parameters.
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